Abstract
In this study, uniaxial compressive strength (UCS), unit weight (UW), Brazilian tensile strength (BTS), Schmidt hardness (SHH), Shore hardness (SSH), point load index (Is50) and P-wave velocity (Vp) properties were determined. To predict the UCS, simple regression (SRA), multiple regression (MRA), artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS) and genetic expression programming (GEP) have been utilized. The obtained UCS values were compared with the actual UCS values with the help of various graphs. Datasets were modeled using different methods and compared with each other. In the study where the performance indice PIat was used to determine the best performing method, MRA method is the most successful method with a small difference. It is concluded that the mean PIat equal to 2.46 for testing dataset suggests the superiority of the MRA, while these values are 2.44, 2.33, and 2.22 for GEP, ANFIS, and ANN techniques, respectively. The results pointed out that the MRA can be used for predicting UCS of rocks with higher capacity in comparison with others. According to the performance index assessment, the weakest model among the nine model is P7, while the most successful models are P2, P9, and P8, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Mining Science and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.