Abstract
Simultaneous removal of NH4+-N, NO3–-N, COD, and P by manganese redox cycling in nutrient wastewater was established with a single-stage moving bed biofilm reactor (MBBR) under low C/N ratio. When sodium succinate replaced the conventional denitrifying carbon source, removal efficiencies of TN, NO3–-N, NH4+-N, TP, and Mn2+ were 65.13 %, 79.63 %, 92.79 %, 51.57 %, and 68.10 %, respectively. Based on modified Stover-Kincannon model, 11.03 and 10.05 mg TN·L−1·h−1 of Umax values were obtained with sodium acetate and sodium succinate as substrates. Extracellular polymeric substances were used to evaluate the characteristics of biofilm, and microbial community of biofilm was identified. Transformation processes of NO3–-N, NH4+-N, Mn2+, and P were investigated, suggesting that the main functional groups (e.g., CO, Mn-O, and CN bonds) participated in N, P, and Mn2+ removal, and MnO2 was the main component of biogenic manganese oxides. This study provides a new strategy for nutrients removal by Mn2+ driven MBBR.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have