Abstract

Abstract This paper introduces a next-generation operational Hurricane Weather Research and Forecasting (HWRF) system that was developed at the U.S. National Centers for Environmental Prediction. The new system, HWRF–Hybrid Coordinate Ocean Model (HYCOM), retains the same atmospheric component of operational HWRF, but it replaces the feature-model-based Princeton Ocean Model (POM) with the eddy-resolving HYCOM. The primary motivation is to improve enthalpy fluxes in the air–sea interface, by providing the best possible estimates of the balanced oceanic states using data assimilated Real-Time Ocean Forecast System products as oceanic initial conditions (IC) and boundary conditions. A proof-of-concept exercise of HWRF–HYCOM is conducted by validating ocean simulations, followed by the verification of hurricane forecasts. The ocean validation employs airborne expendable bathythermograph sampled during Hurricane Gustav (2008). Storm-driven sea surface temperature changes agree within 0.1° and 0.5°C of the mean and root-mean-square difference, respectively. In-storm deepening mixed layer and shoaling 26°C isotherm depth are similar to observations, but they are overpredicted at similar magnitudes of their ICs. The forecast verification for 10 Atlantic hurricanes in 2008 and 2009 shows that HWRF–HYCOM improves intensity by 13.8% and reduces positive bias by 43.9% over HWRF–POM. The HWRF–HYCOM track forecast is indifferent, except for days 4 and 5, when it shows better skill (8%) than HWRF–POM. While this study proves the concept and results in a better skillful hurricane forecast, one well-defined conclusion is to improve the estimates of IC, particularly the oceanic upper layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.