Abstract

High-quality images with minimum radiation dose are considered a challenge in Computed Tomography (CT) scans. The current study aimed to assess the efficacy of the Iterative Reconstruction in Image Space (IRIS) algorithm combined with Automatic Tube Current Modulation (ATCM) compared to Filtered Back Projection (FBP) in brain CT scans. In this cross-sectional study, 200 patients underwent to brain CT scan, and images were then reconstructed using both FBP and IRIS. The CT Number (CTN), noise, and Signal-to-Noise Ratio (SNR) were computed for different tissues from CT images. The performance of two algorithms under different exposure conditions was evaluated using a water phantom. Two experienced radiologists assessed the image quality. Volume CT Dose Index (CTDIvol) and Dose Length Product (DLP) were recorded for each scan. FBP reconstruction exhibited higher noise and lower SNR compared to IRIS, both with and without ATCM. Noise levels significantly increased for FBP combined with ATCM. Subjective analysis showed higher performance for IRIS without ATCM compared to other approaches. The mean CTDIvol with and without ATCM was 20.04±3.33 and 36.37±4.65 mGy, respectively. In the phantom study, the noise with IRIS remained lower than that with FBP even with a 42% dose reduction. IRIS algorithm can preserve the image quality when radiation dose is significantly reduced by ATCM in brain CT scan. Implementation of IRIS combined with ATCM is recommended for brain CT examinations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.