Abstract

A thin-film yttrium-doped barium zirconate comprised of two distinct layers with different porosity was fabricated by pulsed laser deposition method for a low-temperature solid oxide fuel cell electrolyte to enhance electrode reactions and suppress electric short-circuit problem simultaneously. At 250°C, the peak power density of bi-layer electrolyte fuel cell was ~2mW/cm2, which is ~56% higher than that of single-layer electrolyte fuel cell due to significant reduction of cathodic activation loss. A set of materials characterizations revealed that the differences in compositions and micro-structures at the electrolytes accounts for the improved performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.