Abstract

The performance degradation of a TiO2-film-based RRAM (resistive random access memory) is investigated in a proton irradiation experiment with an energy of 25 MeV. The results reveal that the fabricated Au/TiO2 film/Ti devices exhibit typical I–V of bipolar resistive switching behavior under an irradiation of 1 × 1011 protons/cm2. The low-resistance state (LRS) resistance remains nearly constant, but the high-resistance state (HRS) resistance decreases with an increasing proton fluence. The value of the HRS resistance decreases by approximately one order of magnitude when the value of proton fluence reaches 1 × 1011 protons/cm2. Moreover, the SET voltage decreases with a decreasing proton fluence, while the RESET voltage remains almost constant. Material characterization via x-ray photoelectron spectroscopy demonstrates that the decrease in SET voltage and HRS resistance is mainly caused by radiation-induced oxygen vacancies and non-lattice oxygen. Based on the Voltage Threshold Adaptive Memristor model, a mathematical model of the I–V curve which demonstrates the variation in the RRAM resistance and voltage as a function of proton irradiation is constructed. The simulation results conformed to the experimental results under different proton fluences. Our results form a fundamental guide for the study of radiation performance degradation and radiation hardening of the RRAM with oxygen vacancy conducting filament.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call