Abstract
Purpose – The purpose of this paper is to study the different performance of circular, two-lobe and elliptical journal bearings by TEHD analysis. Design/methodology/approach – A complete 3D TEHD model of journal bearings is set up and applied to the lubricant performance calculation of the conventional circular, two-lobe and elliptical journal bearings. The finite difference method is employed to solve the THD model, and the thermo-elasto deformations on the pad are obtained by the finite element software ANSYS11.0. The data transfer between the THD model and ANSYS11.0 is carried out automatically by Interface Program. Findings – It is found that under the identical geometric parameters and operating condition, the circular journal bearing possesses the greatest magnitude of the maximum oil film pressure, the two-lobe one takes the second place and the elliptical one possesses the smallest magnitude. The thermo-elasto deformations on the pad is the same order of magnitude with the minimum film thickness. Practical implications – A complete 3D TEHD model made up of the THD model and ANSYS11.0 can be applied on journal bearings in practice applications. Originality/value – This paper set up a complete 3D TEHD model that is in common use for the lubricant performance analysis of circular and non-circular journal bearings.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.