Abstract

Purpose The water-lubricated hydrodynamic herringbone groove journal bearing (HGJB) is capable of running at high speed. However, when running at a low speed, it suffers from a low load-carrying capacity due to the weak hydrodynamic effect. To overcome this problem, this study proposes a hybrid water-lubricated HGJB and aims to investigate its dynamic characteristics. Design/methodology/approach A hybrid lubrication model applicable to the hybrid water-lubricated HGJB is established based on the boundary fitted coordinate system, which considers the turbulent, thermal and tilting effects, and the finite difference method is used to calculate the dynamic characteristics of the hybrid water-lubricated HGJB. Findings The result shows that the hybrid HGJB has larger dynamic coefficients and better system stability compared with the hydrodynamic HGJB when running at low speed. Furthermore, the stiffness of hybrid HGJB are mainly governed by the hydrodynamic effect rather than the hydrostatic effect when running at high speed. Originality/value The proposed hybrid water-lubricated HGJB shows excellent dynamic characteristics at either low speed or high speed; and the hybrid water-lubricated HGJB has a large load-carrying capacity when running at low speed and has a good dynamic stability when running at high speed. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-06-2024-0233/

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.