Abstract

In this paper, a novel design of counter flow curved double-pass solar air heater (DPSAH) is proposed, and its performance characteristics are numerically investigated and compared with various parallel designs under different flow and geometric conditions. The developed model is first experimentally validated. The hydraulic and thermal performance of various DPSAH designs (smooth curved single pass, smooth parallel curved double-pass, smooth counter curved double-pass, roughened parallel curved double-pass, and roughened counter curved double-pass) show that counter flow curved DPSAH with asymmetrically placed turbulators is thermally better compared to other designs. A maximum of 23% augmentation in thermal performance was observed. To predict the performance of the best design, new correlations for Nusselt number (Nu) and friction factor (f) are developed in terms of Reynolds number (Re) and relative roughness height (d/H). The data estimated from these correlations are in good agreement with the values of f and Nu predicted from the model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.