Abstract

MoS3 nanoparticles as well as MoS3 on graphene and multiwalled carbon nanotubes were synthesized by a solvothermal method and the prepared samples were employed as cathode material in zinc-ion batteries. With distinct advantages like low price, high safety, no environmental pollution, and high power, these batteries have promising properties for future generation battery systems. The microstructure and electrochemical properties of the prepared composite cathodes were investigated by XRD, TG, and XPS. The MoS3/MWCNTs have a discharge specific capacity of 368 mAh g−1 at the current density of 500 mA g−1 and stable cycling performance, and the discharge specific capacity of MoS3/MWCNTs can still reach 321 mAh g−1 at the current density of 1 A g−1. Making use of the outstanding mechanical, electrochemical and electronic properties of MWCNTs, the coated composite of MoS3 nanoparticles on MWCNTs can significantly improve the electrical conductivity of the materials, and enhance the charge-discharge capacity and high rate characteristics of MoS3 as aqueous zinc-ion cathode material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.