Abstract
An aircraft system mainly relies on a Global Positioning System (GPS) to provide accurate position values consistently. However, GPS receivers may encounter frequent GPS absence because of ephemeric error, satellite clock error, multipath error, and signal jamming. To overcome these drawbacks, generally a GPS is integrated with an Inertial Navigation System (INS) mounted inside the vehicle to provide a reliable navigation solution. INS and GPS are commonly integrated using a Kalman filter (KF) to provide a robust navigation solution. In the KF approach, the error models of both INS and GPS are required; this leads to the complexity of the system. This research work presents new position update architecture (NPUA) which consists of various artificial intelligence neural networks (AINN) that integrate both GPS and INS to overcome the drawbacks of the Kalman filter. The various AINNs that include both static and dynamic networks described for the system are radial basis function neural network (RBFNN), backpropagation neural network (BPN), forward-only counter propagation neural network (FCPN), full counter propagation neural network (Full CPN), adaptive resonance theory-counter propagation neural network (ART-CPN), constructive neural network (CNN), higher-order neural networks (HONN), and input-delayed neural networks (IDNN) to predict the INS position error during GPS absence, resulting in different performances. The performances of the different AINNs are analyzed in terms of root mean square error (RMSE), performance index (PI), number of epochs, and execution time (ET).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.