Abstract
The performances of System on Chip (SoC) and the Field Programmable Gate Array (FPGA) particularly, are increasing continually. Due to the growing complexity of modern embedded control systems, the need of more performance digital devices is evident. Recent FPGA technology makes it possible to include processor cores into the FPGA chip, which ensures more flexibility for digital controllers. Indeed, greater functionality of hardware and system software, Real-Time (RT) platforms and distributed subsystems are demanded. In this chapter, a design concept of FPGA based controller with Hardware/Software (Hw/Sw) codesign is proposed. It is applied for electrical machine drives. There are discussed different MultiProcessor SoC (MPSoC) architectures with Hw peripherals for the implementation on FPGA-based embedded processor cores. Hw accelerators are considered in the design to enhance the controller speed performance and reduce power consumption. Test and validation of this control system are performed on a RT motor emulator implemented on the same FPGA. Experimental results, carried on a real prototyping platform, are given in order to analyze the performance and efficiency of discussed architecture designs helping to support hard RT constraints.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.