Abstract

Modern embedded control systems require more performance digital devices to answer their growing complexity. The performances of System on Chip (SoC) and the Field Programmable Gate Array (FPGA) particularly, are increasing continually. Recent FPGA technology makes it possible to include processor cores into the FPGA chip. A high flexibility can be realized for the construction of the control processor in industrial power electronics application. Indeed, greater functionality of hardware and system software, Real-Time (RT) platforms and distributed subsystems are demanded. In this paper, design concept of FPGA-based controller for electrical machine system is proposed. In the proposed method, a full speed RT motor control drive algorithms are implemented by using MultiProcessor SoC (MPSoC) architecture based on softcore processor. Test and validation of this whole controller system is performed by RT motor emulator implemented on the same FPGA. There are discussed different design architectures for the implementation on embedded processor cores and performance analysis of such embedded systems. Experimental results, carried on a real prototyping platform, are given in order to illustrate the efficiency of adopted architecture designs helping to support hard RT constraints.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.