Abstract

Advancement in the semiconductor industry has transformed modern society. A miniaturization of a silicon transistor is continuing following Moore?s empirical law. The planar metal-oxide semiconductor field effect transistor (MOSFET) structure has reached its limit in terms of technological node reduction. To ensure the continuation of CMOS scaling and to overcome the Short Channel Effect (SCE) issues, a new MOS structure known as Fin field-effect transistor (FinFET) has been introduced and has led to significant performance enhancements. This paper presents a comparative study of CMOS gates designed with FinFET 10 nm, 7 nm and 5 nm technology nodes. Electrical parameters like the maximum switching current ION, the leakage current IOFF, and the performance ratio ION/IOFF for N and P FinFET with different nodes are presented in this simulation. The aim and the novelty of this paper is to extract the operating frequency for CMOS circuits using Quantum and Stress effects implemented in the Spice parameters on the latest Microwind software. The simulation results show a fitting with experimental data for FinFET N and P 10 nm strctures using quantum correction. Finally, we have demonstrate that FinFET 5 nm can reach a minimum time delay of td=1.4 ps for CMOS NOT gate and td=1 ps for CMOS NOR gate to improve Integrated Circuits IC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.