Abstract
The heterogeneous network (HetNet) is an attractive solution to solve limited spectral efficiency, the increasing traffic demands, and crowded coverage. In 5G, massive multiple-input multiple-output and millimeter-wave technologies are considered to explore high array gain and alleviate high path loss with beamforming. In this paper, we propose a general tractable model for signal-to-interference-plus-noise ratio (SINR) analysis with cell expansion and beamforming for 5G. In this HetNet, each layer is characterized by particular parameters such as base station (BS) density, transmission power, beam gain, beamwidth, propagation loss, and bias factor. In our model, the expressions of outage probability for each layer and the whole network, which represent the SINR distributions, are derived through a typical user. We also analyze the rate performance by the minimum average user rates and the rate coverage probabilities. Furthermore, the spectrum reuse strategy, some layers are spectrum separation while others are spectrum sharing, are considered to consistent with the existing and future cellular network. From the simulations, system performance can be greatly improved by beamforming and affected by beamwidth, and the optimal bias changes with BS density and path loss. Furthermore, the proposed method provides practical deployment guidelines with some determined parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.