Abstract

The last ten years have witnessed explosive growth in mobile data traffic, which leads to rapid increases in energy consumption of cellular networks. One potential solution to this issue is to seek out a green deployment strategy. In this paper, we investigate the energy-efficient deployment strategy under coverage performance constraints for both homogeneous and heterogeneous cellular networks. Unlike just considering the base station (BS) density in previous work, we jointly optimize the BS density and the BS transmission power. First, we derive the relation between the average coverage probability and deployment strategy (i.e., BS density and BS transmission power) with stochastic geometry tools. Then, based on the expression results, we formulate a network energy consumption minimization framework considering coverage performance constraints and jointly determine the optimal macro BS (MaBS) density, MaBS transmission power, and micro BS (MiBS) density. With practical data sets, numerical simulation results show the following: 1) compared with homogeneous network deployment, heterogeneous network deployment has the advantage in energy efficiency performance, and 2) our joint BS density and BS transmission power optimization strategy exceeds the existing strategy, which just considers the BS density optimization in terms of energy efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.