Abstract

This study explored the biological autonomy and control of function in circumstances that assessed the presumed relationship of an organism with an environmental cycle. An understanding of this behavior appeals to the organism-environment system rather than just the organism. Therefore, we sought to uncover the laws underlying end-directed capabilities by measuring biological characteristics (motor synchrony) in an environmental cycle (circadian temperature). We found that the typical elementary coordination (bimanual) stability measure varied significantly as a function of the day-night temperature cycle. While circadian effects under artificially manipulated temperatures were not straightforward during the day-night temperature cycle, the circadian effect divided by the ordinary circadian rhythm remained constant during the day-night cycle. Our observation of this direct, robust relationship between the biological characteristics (body temperature and motor synchrony) and environmental processes (circadian temperature cycle) could mirror the adaptation of our biological system to the environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.