Abstract
Sharia Bank Return On Assets (ROA) modeling in Indonesia in 2018 aims to analyze the relationship pattern of Retturn On Assets (ROA) with interest rates. The analysis that is often used for modeling is regression analysis. Regression analysis is divided into two, namely parametric and nonparametric. The most commonly used nonparametric regression methods are kernel and spline regression. In this study, the nonparametric regression used was kernel regression with the Nadaraya-Watson (NWE) estimator and Local Polynomial (LPE) estimator, while the spline regression was smoothing spline and B-splines. The fitting curve results show that the best model is the B-splines regression model with a degree of 3 and the number of knots 5. This is because the B-splines regression model has a smooth curve and more closely follows the distribution of data compared to other regression curves. The B-splines regression model has a determination coefficient of R ^ 2 of 74.92%,%, meaning that the amount of variation in the ROA variable described by the B-splines regression model is 74.92%, while the remaining 25.8% is explained by other variables not included in the model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.