Abstract

We consider the dynamics of an elastic sheet lubricated by the flow of a thin layer of fluid that separates it from a rigid wall. By considering long wavelength deformations of the sheet, we derive an evolution equation for its motion, accounting for the effects of elastic bending, viscous lubrication, and body forces. We then analyze various steady and unsteady problems for the sheet, such as peeling, healing, levitating, and bursting, using a combination of numerical simulation and dimensional analysis. On the macroscale, we corroborate our theory with a simple experiment, and, on the microscale, we analyze an oscillatory valve that can transform a continuous stream of fluid into a series of discrete pulses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.