Abstract
Non-structural protein (NS1) has been conceded as one of the biomarkers for flavivirus that causes diseases with life threatening consequences. NS1 is an antigen that allows detection of the illness at febrile stage, mostly from blood samples currently. Our work here intends to define an optimum model for PCA-SVM with MLP kernel for classification of flavivirus biomarker, NS1 molecule, from SERS spectra of saliva, which to the best of our knowledge has never been explored. Since performance of the model depends on the PCA criterion and MLP parameters, both are examined in tandem. Input vector to classifier determined by each PCA criterion is subjected to brute force tuning of MLP parameters for entirety. Its performance is also compared to our previous works where a Linear and RBF kernel are used. It is found that the best PCA-SVM (MLP) model can be defined by 5 PCs from Cattel's Scree test for PCA, together with P1 and P2 values of 0.1 and -0.2 respectively, with a classification performance of [96.9%, 93.8%, 100.0%].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.