Abstract

With the European Union's (EU's) RoHS directives coming into force in July 2006 for consumer electronics products, the transition to lead-free (Pb-free) solder has occurred at a rapid pace. This push has driven many OEM suppliers/manufacturers to adopt Pb-free solder and End of Life many of their conventional Tin-Lead (Sn-Pb) components. This has forced telecom or high reliability applications to adopt Pb-free solder compositions with many reliability anomalies unanswered. While there have been many studies published on long term reliability of Pb-free solder joints at the component level, there have been few studies focused on the time zero reliability of the joints at the printed circuit board assembly (PCBA) level. The goal of this study is to help the OEM suppliers and their customers (like service providers) to come up with a common PCBA test methodology that will help identify and weed out early, marginal manufacturing and design defects that would crop up due to transition to the Pb-free solder. A normalized reliability data comparison and impact of the test on Pb-free and Tin-Lead solder alloys using test vehicles is presented in this study. The sequential PCBA level evaluation methodology involves a series of tests that include Thermal Aging, Mechanical Shock, Vibration, Functional test over elevated temperature and Destructive Analysis (Dye & Pry and Cross-sectional analysis) . The solder joint reliability comparisons for different components are presented against this methodology using different PCBA constructions (test vehicles).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call