Abstract

To evaluate the factors influencing patterns of metal accumulation by river biofilms, concentrations of chromium (Cr), nickel (Ni), copper (Cu), and lead (Pb) in biofilms from Erh-Jen River and San-Yeh-Kung Creek were investigated during their growth and seasonal succession. Different metal-accumulation patterns during biofilm development were observed between the two rivers. Mature biofilms (grown for 21-28 days) in both rivers showed maximum metal accumulation (≤3.24 × 10(4), 1.55 × 10(4), 7.40 × 10(3), and 7.80 × 10(2) μg g(-1) of Cr, Ni, Cu, and Pb, respectively) and bioconcentration factors (≤7.15 × 10(5), 1.60 × 10(5), 2.60 × 10(5), and 4.22 × 10(5) l kg(-1) of Cr, Ni, Cu, and Pb, respectively). These types of biofilms had the characteristics of being good metal accumulators and the ability to integrate metal-exposure conditions, suggesting that they were suitable biomonitors for metal-contaminated water. Seasonal succession in metal-accumulation ability of 1-month-old biofilms from Erh-Jen River was mainly affected by changes in bacterial and algal biomass and chemical oxygen demand in water, whereas that from San-Yeh-Kung Creek was primary influenced by concentrations of total nitrogen in water. Synergistic interaction between these four metals on metal-binding sites within biofilms was also shown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call