Abstract

Delhi's agricultural hub, nestled along the Yamuna floodplains, faces soil and water contamination issues. Utilizing organic waste composts is gaining traction to improve soil quality, but uncertainties remain about their efficacy in reducing harmful elements. The study examined three Amaranthaceae cultivars, comparing organic waste composts with chemical fertilizer to evaluate correlations between heavy metals, antioxidants, and antinutrients to assess their bioremediation potential. "Heavy metals" or "potentially toxic elements (PTE)" levels in soil and leaves were measured by ICP-MS, while antioxidants and antinutrients were analyzed with UV-VIS spectroscopy. The study revealed higher PTE levels in floodplain soil, with Cr, Ni, and Cd exceeding safe limits in all cultivars. Compost amendments reduced these pollutants by 28% compared to chemical fertilizers, decreasing bioaccumulation by 20%. Health risk assessments showed lower risks in compost-amended cultivars. Additionally, compost amendment displayed a stronger negative correlation between PTE and antioxidants, suggesting effective bioremediation. Overall, compost amendments offer promise for mitigating PTE in metropolitan floodplains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.