Abstract

Patterning of colloidal quantum dot (QD) of a nanometer resolution is important for potential applications in micro- or nanophotonics. Several patterning techniques such as polymer composites, molecular key-lock methods, inkjet printing, and the microcontact printing of QDs have been successfully developed and applied to various plasmonic applications. However, these methods are not easily adapted to conventional complementary metal-oxide semiconductor (CMOS)-compatible processes because of either limits in fabrication resolutions or difficulties in sub-100-nm alignment. Here, we present an adaptation of a conventional lift-off method for the patterning of colloidal QDs. This simple method can be later applied to CMOS processes by changing electron beam lithography to photolithography for building up photon-generation elements in various planar geometries. Various shapes formed by colloidal QD clusters such as straight lines, rings, and dot patterns with sub-100-nm size could be fabricated. The patterned structures show sub-10-nm positioning with good fluorescence properties and well-defined sidewall profiles. To demonstrate the applicability of our method, we present a surface plasmon generator from a QD cluster.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call