Abstract
PurposeThis paper aims to take stock of research done in the domain of relationship marketing (RM). Additionally, this article aims to identify the potential areas of future research.Design/methodology/approachThe authors have used machine learning-based structural topic modelling using R-software to analyse the dataset of 1,905 RM articles published between 1978 and 2020.FindingsStructural topic modeling (STM) analysis led to identifying 14 topics, out of which 7 (viz. customer loyalty, customer relationship management systems, interfirm and network relationships, relationship selling, services and relationship management, consumer brand relationships and relationship marketing research) have shown a rising trend. The study also proposes a taxonomical framework to summarize RM research.Originality/valueThis is the first comprehensive review of RM research spanning over more than four decades. The study’s insights would benefit future scholars of this field to plan/execute their research for greater publication success. Additionally, managers could use the practical implications for achieving better RM outcomes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.