Abstract

The healing process of bone fractures can be monitored by a measurement of the osteosynthesis plate bending. For this purpose a wireless magnetostrictive bending sensor is proposed. A planar rectangular coil on top of a magnetostrictive Galfenol ( alloy) layer forms an electrical resonant circuit. The sensor is manufactured in thin film technology. Coil turns were electrodeposited by pattern plating. Sensors with overall dimensions of (13 2 0.5) mm were manufactured with varied turn numbers showing self-resonance frequencies from 5 to 50 MHz. Examined sensors possess linear frequency-force characteristic up to 6 N with frequency shifts of 6 kHz . In order to obtain the sensor resonance frequency wirelessly, several measurement techniques were employed using inductively coupled coils. Frequency domain measurements have been carried out by employing a network analyzer with a single detection coil and a lock-in amplifier with separate coils for excitation and detection. In time domain measurements, two coils for transmission and reception are used. In the transmit case a short sine pulse excites the sensor and afterwards its decaying response signal is received. To determine the resonance frequency, a frequency counting, Fourier or wavelet technique can be used. By integrating additional cores of high permeability into sensor and detection coil, measurement ranges can be increased.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call