Abstract

We introduce a model of interacting bosons exhibiting an infinite collection of fractal symmetries-termed "Pascal's triangle symmetries"-which provides a natural U(1) generalization of a spin-(1/2) system with Sierpinski triangle fractal symmetries introduced in Newman etal.,[Phys. Rev. E 60, 5068 (1999).PLEEE81063-651X10.1103/PhysRevE.60.5068]. The Pascal's triangle symmetry gives rise to exact degeneracies, as well as a manifold of low-energy states which are absent in the Sierpinski triangle model. Breaking the U(1) symmetry of this model to Z_{p}, with prime integer p, yields a lattice model with a unique fractal symmetry which is generated by an operator supported on a fractal subsystem with Hausdorff dimension d_{H}=ln(p(p+1)/2)/lnp. The Hausdorff dimension of the fractal can be probed through correlation functions at finite temperature. The phase diagram of these models at zero temperature in the presence of quantum fluctuations, as well as the potential physical construction of the U(1) model, is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.