Abstract
Bottom-up self-organization approaches are promising for fabricating higher-order patterned surfaces composed of colloidal particles. The first example among the patterns that have been extensively studied would be stripes; however, the formation of stripe patterns has so far been confined to partially or fully hydrophobic surfaces. By contrast, we have succeeded in preparing well-defined stripe patterns even on strongly hydrophilic substrates via a convective self-assembly technique. By using this technique, a stripe pattern was produced simply by suspending a substrate in a dilute suspension, without any complicated procedure; the stripes spontaneously aligned parallel to the contact line. Driven by this finding, we further investigate this self-assembly process, and find out that the convective self-assembly is quite promising as a template-free pattern formation technique. In the present paper, we first overview the convective self-assembly technique which is originally developed for uniform film formation, and then present our recent results on the pattern formation of colloidal particles through the convective self-assembly. This technique can produce various patterns including stripes, cluster arrays, and grids in response to macroscopic experimental parameters such as particle concentration and temperature.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have