Abstract

Summary Recent methodological advances have led to unprecedented precision in the immobilization of metal nanoparticles. These methodologies come from a broad range of disciplines and organize nanoparticle building blocks into a diverse selection of distinct architectures—from small arrays to ordered superstructures. Because properties can be dictated by assembly, architectures can present enhanced properties of the constituent nanoparticles or generate emergent properties of the collective architecture that are unavailable to their constituent nanoparticles. Functional architectures use these properties to further tailor and optimize performance in myriad applications. This review discusses the methodological advances that enable the immobilization of metal nanoparticles in distinct two- and three-dimensional architectures. Discussion will include their distinctions, properties associated with the assemblies and their applications, and the key challenges and future directions in this growing field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.