Abstract

ABSTRACT UV-curable particle-free ceramic compositions for stereolithography-based 3D printing technologies present a promising alternative to the commonly used particle-based compositions. So far, such compositions were mainly based on solutions of pre-ceramic polymers which limit their applications to silicon-containing materials. However, the application of particle-free inks for the fabrication of other ceramic materials, in particular dense polycrystalline ones, is very little explored. We present a new and general fabrication approach based on all-solution compositions, by combining sol–gel chemistry and photopolymerization, for obtaining dense 3D ceramic structures by DLP printing. The process is demonstrated here for the fabrication of barium titanate (BaTiO3). By using chelating solvent and monomer, a stable UV-curable solution is obtained. An aging period of 8–14 days was crucial for obtaining dense ceramic objects without any secondary phases. The heat treatment was found to affect the microstructure, density and hardness of the resulting ceramics. The presented process enables obtaining objects free of carbon materials, having a density as high as 98% of the theoretical value, and a hardness of 4.3 GPa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.