Abstract
Statement of problemClinical studies evaluating the tissue surface adaptation of complete denture bases fabricated by digital light processing (DLP) are lacking. PurposeThe purpose of this clinical study was to assess the tissue surface adaptation of complete denture bases generated by the DLP technique and to compare the adaptation with that of denture bases manufactured by 5-axis milling (MIL) and pack-and-press (PAP) method. Material and methodsA total of 9 participants with 12 edentulous arches (7 maxillary and 5 mandibular) were included in this study. For each edentulous arch, the complete denture bases with occlusion rims were prepared by 3 different techniques (PAP, MIL, and DLP). A virtual denture base with occlusion rim was designed by means of a digital subtraction tool and served to fabricate the DLP and MIL denture bases. The complete denture bases were placed intraorally with an indicator applied to the intaglio surfaces. The thickness of the indicator was measured within the denture-bearing areas and anatomic landmarks of the edentulous arch to obtain the absolute tissue surface adaptation (ATA) value. The relative tissue surface adaptation (RTA) value was calculated from the differences between the ATA values of DLP or MIL techniques and those of the PAP technique. The Kruskal-Wallis test and the McNemar test were used for statistical analysis (α=.05). ResultsNo statistically significant differences were found among the 3 denture base fabrication techniques with respect to the ATA values of either arch (P>.05). In terms of the RTA values for the maxillary arch, the DLP base was significantly different from the MIL base in the RC and P areas (both P<.05). The DLP base exhibited a higher frequency of negative RTA values than the MIL base. Regarding the RTA values for the mandibular arch, no significant differences were detected between the DLP and MIL denture bases (P>.05). ConclusionsThe DLP and MIL denture bases demonstrated clinically acceptable tissue surface adaptation to both edentulous the maxilla and mandible. The DLP denture base was likely to exhibit intimate tissue adaptation in the stress-bearing areas of maxillary arches compared with the PAP denture base. The maxillary MIL denture base was likely to exhibit small gaps between the supporting tissue and denture base. Both DLP and MIL mandibular denture bases were likely to show intimate adaptation on the lingual slope compared with the PAP base.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.