Abstract
ABSTRACT Laser-based directed energy deposition (L-DED) offers significant advantages for repairing metal structures, particularly in the marine and offshore industry where corrosion-resistant materials like Monel K-500 (a Ni-Cu alloy) lack strength and wear resistance. This study addresses this issue by producing Monel K-500 with high-strength Stellite 6 (a Co-Cr alloy). Two types of multi-material samples were created using L-DED: interlayered and mixed powder samples. The interlayered samples experienced cracking at the material interface, while the mixed powder samples were crack-free and exhibited improved mechanical properties, with yield strength increasing from 208.3 MPa to 490.2 MPa and ultimate tensile strength from 429.7 MPa to 887.0 MPa compared to single Monel K-500 samples. This research demonstrated the potential of in-situ alloying during the L-DED process to enhance alloy properties and highlighted the challenges of abrupt compositional changes leading to cracking, suggesting mitigation strategies for successful production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.