Abstract
Conventional enzyme-based glucose biosensors have limited extensive applications in daily life because glucose oxidase is easily inactivated and is expensive. In this paper, we propose a strategy to prepare a new type of cost-effective, efficient, and robust nonenzymatic Ni-CNT-O for electrochemical glucose sensing. It is first followed by the pyrolysis of Ni-ABDC nanostrips using melamine to grow carbon nanotubes (CNTs) to give an intermediate product of Ni-CNT, which is further accompanied by partial oxidation to enable the facile formation of hierarchical carbon nanomaterials with improved hydrophilicity. A series of physicochemical characterizations have fully proved that Ni-CNT-O is a carbon-coated heterostructure of Ni and NiO nanoparticles embedded into coordination polymer-derived porous carbons. The obtained Ni-CNT-O exhibits a better electrocatalytic activity for glucose oxidation stemming from the synergistic effect of a metal element and a metal oxide than unoxidized Ni-CNT, which also shows high performance with a wide linear range from 1 to 3000 μM. It also offers a high sensitivity of 79.4 μA mM-1 cm-2, a low detection limit of 500 nM (S/N = 3), and a satisfactory long-term durability. Finally, this glucose sensor exhibits good reproducibility, high selectivity, as well as satisfactory results by comparing the current response of simulated serum within egg albumen.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.