Abstract
Schwinger-Dyson equations are used to study spontaneous chiral and parity symmetry breaking of three-dimensional quantum electrodynamics with two-component fermions. This theory admits a topological photon mass that explicitly breaks parity symmetry and generates a fermion mass. We show for the first time that it is possible to spontaneously break both parity and chiral symmetry. We also find that chiral symmetry is restored at a critical number of fermion flavors in our truncation scheme. Finally, the Coleman-Hill theorem is used to demonstrate that the results are reasonably accurate.
Accepted Version (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have