Abstract
Based on the experimental observation that there is a coexisting region between the antiferromagnetic (AF) and d-wave superconducting (dSC) phases, the influences of gauge boson mass m a on chiral symmetry restoration and deconfinement phase transitions in QED3 are investigated simultaneously within a unified framework, i.e., Dyson–Schwinger equations. The results show that the chiral symmetry restoration phase transition in the presence of the gauge boson mass m a is a typical second-order phase transition; the chiral symmetry restoration and deconfinement phase transitions are coincident; the critical number of fermion flavors N c f decreases as the gauge boson mass m a increases, which implies that there exists a boundary that separates the N c f –m a plane into chiral symmetry breaking/confinement region for (N c f , m a ) below the boundary and chiral symmetry restoration/deconfinement region for (N c f , m a ) above it.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.