Abstract
Abstract The parametric vibration and combined resonance of a turbine blade with a preset angle subjected to the combined effect of parametric and forced excitation were investigated. The blade was modeled as a rotating beam considering the effects of centrifugal, gyroscopic, and bending-torsion coupling. The instability region of the corresponding linear system with parametric excitation was analyzed using Floquet theory, and the effect of blade parameters on this region was discussed. Notably, the parametric vibration of the torsional degree-of-freedom (DOF) caused by parametric excitation of the bending degree-of-freedom has been found. The results show that the size and position of the parameter resonance region are affected by the blade aspect ratio and preset angle, respectively. Furthermore, the multiscale method was employed to solve the blade equation under the combined action of parametric and forced excitation to study the combined resonance caused by forced excitation and gyroscopic items. The effect of blade parameters and excitation characteristics on regions of combined resonance were investigated. The phenomenon of heteroclinic bifurcation was observed due to changes in the excitation frequency, and the harmonic components that accompanied the bifurcation changed. Specifically, a multiperiod response dominated by the excitation frequency and subharmonic components shifted to a single-period response dominated by subharmonic components. This study provides a theoretical explanation for the nonsynchronous resonance of blades and the subharmonic signals in blade vibration and guides blade parameter design, especially for wind turbines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.