Abstract

It is well known that parametric vibrations may appear during the rotation of a rotor with a cracked shaft. The vibrations occur due to periodic stiffness changes being the result of the crack breathing. A parametrically excited system may exhibit parametric resonances and antiresonances affecting the stability of the system. In most cases the destabilizing effect due to parametric resonances is studied. Antiresonant cases seem to be uninteresting. However, the antiresonances have a unique property of introducing additional artificial damping to the system, thus improving its stability and reducing the vibration amplitude. Apart from different control applications, this stabilizing effect may be interesting for its probable ability to indicate the shaft crack. The possible application of the additional damping introduced by parametric excitation for the shaft crack detection is analyzed in the present paper. The approach is demonstrated with a mathematical model of a rotor with a cracked shaft. The stability analysis of the rotor is performed analytically by employing the averaging method. Stability boundaries for different frequencies of the parametric excitation and for different crack depths are derived. The results of this analysis are checked numerically by means of the Floquet's theory. Next, possible applications of the parametric excitation for the shaft crack detection are validated numerically.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.