Abstract
Abstract Friction stir processing was used to prepare aluminium metal matrix composite reinforced with B4C particles. The micro-hardness of the composite was improved by selecting the process parameters. Friction stir processing parameters, namely tool rotational speed, tool tilt angle and different pin profiles, were explored by using Taguchi’s L9 orthogonal array and analysis of variance. Optical microscopy and scanning electron microscopy were employed for microstructural analysis. X-ray diffraction was used to evaluate the residual stress. Experimental results illustrated that increased rotational speed, reduced tilt angle and square pin profile of the tool gave more uniform dispersal of B4C content with maximum micro-hardness. Small amounts of compressive residual stress developed at the stirred and thermo-mechanically affected zones confirmed the adequate improvement in micro-hardness. Micro-hardness of fabricated Al 6063/B4C composite surfaces was enhanced by 30% as compared to Al 6063 alloy.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have