Abstract
In this work, we present a three-dimensional model for the design of wideband piezoelectric polymer sensors which includes the geometry and the properties of the transducer materials. The model uses FFT and numerical integration techniques in an explicit, semi-analytical approach. To validate the model, we made electrical and mechanical measurements on homemade sensors for optoacoustic applications. Each device was implemented using a polyvinylidene fluoride thin film piezoelectric polymer with a thickness of 25 μm. The sensors had detection areas in the range between 0.5 mm2 and 35 mm2 and were excited by acoustic pressure pulses of 5 ns (FWHM) from a source with a diameter around 10 μm. The experimental data obtained from the measurements agree well with the model results. We discuss the relative importance of the sensor design parameters for optoacoustic applications and we provide guidelines for the optimization of devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.