Abstract
This paper presents a superelastic alloy microgripper with integrated electromagnetic actuators and piezoelectric sensors. The design parameters for electromagnetic actuators in the microgripper are selected based on the sensitivity analysis using FEM analysis. For integration of miniature force sensors in the microgripper, the sensor design based on the piezoelectric polymer PVDF film and fabrication process are also presented. Electro discharge machining technology is employed to fabricate the microgripper structure made of superelastic NiTi alloy. The experimental setup is implemented to evaluate the performance of the fabricated force sensors and electromagnetic actuators integrated into the microgripper. Finally, results of finite element computer simulations for electromagnetic actuators and piezoelectric polymer sensors are compared with experimental results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.