Abstract

In recent years, the evolution of computer-aided design technology has established a new design method to improve digital model creations. The new design method is called Parametric Modeling. In this paper, 3D metallic models are printed using a novel Parametric Modeling approach. The goal of this approach is to use parametric design features to simulate and print 3D metallic objects using Laser Wire Additive Manufacturing (LWAM) process. The proposed approach includes a pattern creation and robot targets assignment while considering several process requirements of LWAM and the robot system. This technique will allow the development of an adaptive robot toolpath for a good deposition process. Finally, a wall, a cylinder, and a complex shape were simulated and deposited to validate the proposed approach. The results show that the approach is feasible, adaptive, and can enhance 3D metallic print in the LWAM process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.