Abstract

PurposeThe purpose of this paper is to present a novel methodology to produce a large boat hull with a foam additive manufacturing (FAM) process. To respond to shipping market needs, this new process is being developed. FAM technology is a conventional three-dimensional (3D) printing process whereby layers are deposited onto a high-pressure head mounted on a six-axis robotic arm. Traditionally, molds and masters are made with computer numerical control (CNC) machining or finished by hand. Handcrafting the molds is obviously time-consuming and labor-intensive, but even CNC machining can be challenging for parts with complex geometries and tight deadlines.Design/methodology/approachThe proposed FAM technology focuses on the masters and molds, that are directly produced by 3D printing. This paper describes an additive manufacturing technology through which the operator can create a large part and its tools using the capacities of this new FAM technology.FindingsThe study shows a comparison carried out between the traditional manufacturing process and the additive manufacturing process, which is illustrated through an industrial case of application in the manufacturing industry. This work details the application of FAM technology to fabricate a 2.5 m boat hull mold and the results show the time and cost savings of FAM in the fabrication of large molds.Originality/valueFinally, the advantages and drawbacks of the FAM technology are then discussed and novel features such as monitoring system and control to improve the accuracy of partly printed are highlighted.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call