Abstract

Large arrays with localized coil sensitivity make it possible to use parallel imaging to significantly accelerate MR imaging speed. However, the need for auto calibration signals limits the actual acceleration factors achievable with large arrays. This paper presents a novel method for parallel imaging with large arrays. The method uses Sinc kernels for k-space data interpolation that only requires one phase parameter to be estimated using a small size of calibration signals. Simulations based on synthetic array data and phantom experiments show that the new method can achieve higher actual acceleration factors with comparable reconstruction quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.