Abstract

The application of parallel magnetic resonance (MR) imaging is increasing as clinicians continue to strive for improved spatial and temporal resolution, benefits that arise from the use of fewer phase encodings during imaging. To reconstruct images, extra information is needed to map the spatial sensitivity of each coil element, which may be accomplished by acquiring a calibration image in one common implementation of parallel MR imaging. Although obtaining a quick calibration image is an efficient method for gathering this information, corruption of the image or disharmony with subsequent images may lead to errors in reconstruction. Although conventional MR imaging sequences may be employed with parallel MR imaging, the altered image reconstruction introduces several new artifacts and changes the appearance of conventional artifacts. The altered appearance of traditional artifacts may obscure the source of the problem, and, in some cases, the severity of artifacts associated with parallel MR imaging may be exacerbated, hindering image interpretation. Several artifacts arise in the context of parallel MR imaging, including both traditional artifacts and those associated with parallel MR imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.