Abstract
Using tropical geometry, Mikhalkin has proved that every smooth complex hypersurface in $\mathbb{CP}^{n+1}$ decomposes into pairs of pants: a pair of pants is a real compact $2n$-manifold with cornered boundary obtained by removing an open regular neighborhood of $n+2$ generic hyperplanes from $\mathbb{CP}^n$. As is well-known, every compact surface of genus $g\geqslant 2$ decomposes into pairs of pants, and it is now natural to investigate this construction in dimension 4. Which smooth closed 4-manifolds decompose into pairs of pants? We address this problem here and construct many examples: we prove in particular that every finitely presented group is the fundamental group of a 4-manifold that decomposes into pairs of pants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.