Abstract
A pair of pants is a genus zero orientable surface with three boundary components. A pants decomposition of a surface is a finite collection of unordered pairwise disjoint simple closed curves embedded in the surface that decompose the surface into pants. In this paper, we present two Morse theory based algorithms for pants decomposition of a surface mesh. Both algorithms operates on a choice of an appropriate Morse function on the surface. The first algorithm uses this Morse function to identify handles that are glued systematically to obtain a pants decomposition. The second algorithm uses the Reeb graph of the Morse function to obtain a pants decomposition. Both algorithms work for surfaces with or without boundaries. Our preliminary implementation of the two algorithms shows that both algorithms run in much less time than an existing state-of-the-art method, and the Reeb graph based algorithm achieves the best time efficiency. Finally, we demonstrate the robustness of our algorithms against noise.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.