Abstract
AbstractA pants decomposition of a compact orientable surface M is a set of disjoint simple cycles which cuts M into pairs of pants, i.e., spheres with three boundaries. Assuming M is a polyhedral surface, with weighted vertex-edge graph G, we consider combinatorial pants decompositions: the cycles are closed walks in G that may overlap but do not cross.We give an algorithm which, given a pants decomposition, computes a homotopic pants decomposition in which each cycle is a shortest cycle in its homotopy class. In particular, the resulting decomposition is optimal (as short as possible among all homotopic pants decompositions), and any optimal pants decomposition is made of shortest homotopic cycles. Our algorithm is polynomial in the complexity of the input and in the longest-to-shortest edge ratio of G. The same algorithm can be applied, given a simple cycle C, to compute a shortest cycle homotopic to C which is itself simple.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.