Abstract
Статья посвящена памяти Георгия Вороного. Описываются новые избранные результаты о рядах Эйзенштейна, о (мотивных), (p-адических), (кратных) значениях (круговых) дзета и L-функций, и их приложения, полученные ниже перечисляемыми авторами, а также элементарное введение в эти результаты. Дан краткий обзор новых результатов о (мотивных), (p-адических), (кратных) значениях (круговых) дзета функциях, L-функциях и рядах Эйзенштейна. Статья ориентирована на избранные задачи и не является исчерпывающей. Начало статьи содержит краткое изложение результатов о числах Бернулли, связанных с исследованиями Георгия Вороного. Результаты о кратных значениях дзета функций были представлены Д. Загиром, П. Делинем и А. Гончаровым, А. Гончаровым, Ф. Брауном, К. Глэносом (Glanois) и другими. С. Унвер ("Unver) исследовал кратные p-адические дзета-значения глубины два. Таннакиева интерпретация кратных p-адических дзета-значений дана Х. Фурушо. Краткая история и связи между группами Галуа, фундаментальными группами, мотивами и арифметическими функциями представлены в докладе Ю. Ихара. Результаты о кратных дзета-значениях, группах Галуа и геометрии модулярных многообразий представлены Гончаровым. Интересная унипотентная мотивная фундаментальная группа определена и исследована Делинем и Гончаровым. В данной работе мы кратко упоминаем в рамках (p-адических) L-функций и (p-адических) (кратных) дзета-значений применения подходов Куботы-Леопольдта и Ивасавы, которые основанны на p-адических L-функциях Куботы-Леопольда, и арифметических p-адических L-функциях Ивасавы. Прореферирован ряд недавних работ (и соответствующих результатов): кратные дзета-значения в корнях из единицы, построение семейств мотивных итерированных интегралов с предписанными свойствами по Глэносу (Glanois); явные выражения для круговых p-адических кратных дзета-значений глубины два по Унверу (Unver); связи арифметических степеней циклов Кудлы-Рапопорта на интегральной модели многообразия Шимуры, соответствующей унитарной группе сигнатуры (1,1), с коэффициентами Фурье центральных производных рядов Эйзенштейна рода 2 по Санкарану (Sankaran). Более полно с содержанием статьи можно ознакомиться по приводимому ниже оглавлению: Введение. 1. Сравнения типа Вороного для чисел Бернулли. 2. Римановы дзета-значения. 3. О группах классов колец с теорией дивизоров. Мнимые квадратичные и круговые поля. 4. Ряды Эйзенштейна. 5. Группы классов, поля классов и дзета-функции. 6. Кратные дзета-значения. 7. Элементы неархимедовых локальных полей и неархимедова анализа. 8. Итерированные интегралы и (кратные) дзета-значения. 9. Формальные и p-делимые группы. 10. Мотивы и (p-адические) (кратные) дзета-значения. 11. О рядах Эйзенштейна, ассоциированных с многообразиями Шимуры. Разделы 1-9 и подраздел 11.1 (О некоторых многообразиях Шимуры и модулярных формах Зигеля) можно рассматривать как элементарное введение в результаты раздела 10 и подраздела 11.2 (О несобственном пересечении дивизоров Кудлы-Рапопорта и рядах Эйзенштейна).Я глубоко признателен Н. М. Добровольскому за помощь и поддержку в процессе подготовки статьи к печати.
Highlights
The article is dedicated to the memory of George Voronoi
The beginning of the article contains a short summary of the results on the Bernoulli numbers associated with the studies of George Voronoi
On the Eisenstein series associated with Shimura varieties
Summary
The article is dedicated to the memory of George Voronoi. It is concerned with (p-adic) Lfunctions (in partially (p-adic) zeta functions) and cyclotomic (p-adic) (multiple) zeta values. Results on multiple zeta values, Galois groups and geometry of modular varieties has presented by Goncharov [6]. Motives and (p-adic) (multiple) zeta values, improper intersections of Kudla-Rapoport divisors and Eisenstein series by Sankaran [37] are reviewed. Manin gave courses of lectures and seminars on Algebraic Geometry, Diophantine Geometry in MGU and in Steklov mathematical institute In his lectures and talks Yu. Manin presented and discussed the Birch-Swinnerton-Dyer conjecture concerning L− functions of elliptic curves and abelian varieties. Manin the author has implemented the computer program and has computed Manin’s modular symbols [39] for elliptic curve EΓ0(11) follow to Manin article [2]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have