Abstract
The leakage current response of high-permittivity columnar-grown (Ba,Sr)TiO3 thin films has been studied at elevated temperatures under dc load. We observe a thermally activated current prior to the onset of the resistance degradation with an activation energy of EA=1.1eV. A point defect model is applied to calculate the migration of electronic and ionic defects under the dc field as well as the current response of the system. We find that the peak in current is not caused by a space-charge-limited transient of oxygen vacancies, but related to a modulation of the electronic conductivity upon oxygen vacancy redistribution. Furthermore, we show that after the redistribution of electronic and ionic defects, no further increase in conductivity takes place in the simulation.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have