Abstract
Photoassisted electrochemical reaction is regarded as an effective approach to reduce the overpotential of lithium-oxygen (Li-O2 ) batteries. However, the achievement of both broadband absorption and long term battery cycling stability are still a formidable challenge. Herein, an oxygen vacancy-mediated fast kinetics for a photoassisted Li-O2 system is developed with a silver/bismuth molybdate (Ag/Bi2 MoO6 ) hybrid cathode. The cathode can offer both double advantages for light absorption covering UV to visible region and excellent electrochemical activity for O2 . Upon discharging, the photoexcited electrons from Ag nanoplate based on the localized surface plasmon resonance (LSPR) are injected into the oxygen vacancy in Bi2 MoO6 . The fast oxygen reaction kinetics generate the amorphous Li2 O2 , and the discharge plateau is improved to 3.05V. Upon charging, the photoexcited holes are capable to decompose amorphous Li2 O2 promptly, yielding a very low charge plateau of 3.25V. A first cycle round-trip efficiency is 93.8% and retention of 70% over 500 h, which is the longest cycle life ever reported in photoassisted Li-O2 batteries. This work offers a general and reliable strategy for boosting the electrochemical kinetics by tailoring the crystalline of Li2 O2 with wide-band light.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.